Subcellular [Ca2+]i gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes.

نویسندگان

  • P S Haddock
  • W A Coetzee
  • E Cho
  • L Porter
  • H Katoh
  • D M Bers
  • M S Jafri
  • M Artman
چکیده

The central role of T-tubule and sarcoplasmic reticulum (SR) diadic junctions in excitation-contraction (EC) coupling in adult (AD) ventricular myocytes suggests that their absence in newborn (NB) cells may manifest as an altered EC coupling phenotype. We used confocal microscopy to compare fluo-3 [Ca2+]i transients in the subsarcolemmal space and cell center of field-stimulated NB and AD rabbit ventricular myocytes. Peak systolic [Ca2+]i occurred sooner and was higher in the subsarcolemmal space compared with the cell center in NB myocytes. In AD myocytes, [Ca2+]i rose and declined with similar profiles at the cell center and subsarcolemmal space. Disabling the SR (10 micromol/L thapsigargin) slowed the rate of rise and decline of Ca2+ in AD myocytes but did not alter Ca2+ transient kinetics in NB myocytes. In contrast to adults, localized SR Ca2+ release events ("Ca2+ sparks") occurred predominantly at the cell periphery of NB myocytes. Immunolabeling experiments demonstrated overlapping distributions of the Na(+)-Ca2+ exchanger and ryanodine receptors (RyR2) in AD myocytes. In contrast, RyR2s were spatially separated from the sarcolemma in NB myocytes. Confocal sarcolemmal imaging of di-8-ANEPPS-treated myocytes confirmed an extensive T-tubule network in AD cells, and that T-tubules are absent in NB myocytes. A mathematical model of subcellular Ca2+ dynamics predicts that Ca2+ flux via the Na(+)-Ca2+ exchanger during an action potential can account for the subsarcolemmal Ca2+ gradients in NB myocytes. Spatial separation of sarcolemmal Ca2+ entry from SR Ca2+ release channels may minimize the role of SR Ca2+ release during normal EC coupling in NB ventricular myocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of FK-506 binding protein 12.0 modulates excitation contraction coupling in adult rabbit ventricular cardiomyocytes.

The effect of the 12-kDa isoform of FK-506-binding protein (FKBP)12.0 on cardiac excitation-contraction coupling was studied in adult rabbit ventricular myocytes after transfection with a recombinant adenovirus coding for human FKBP12.0 (Ad-FKBP12.0). Western blots confirmed overexpression (by 2.6+/-0.4 fold, n=5). FKBP12.0 association with rabbit cardiac ryanodine receptor (RyR2) was not detec...

متن کامل

Subcellular properties of [Ca2+]itransients in phospholamban-deficient mouse ventricular cells.

The regulatory protein phospholamban exerts a physiological inhibitory effect on the sarcoplasmic reticulum (SR) Ca2+ pump that is relieved with phosphorylation. We have studied the subcellular properties of intracellular Ca2+([Ca2+]i) transients in ventricular myocytes isolated from wild-type (WT) and phospholamban-deficient (PLB-KO) mice. In PLB-KO myocytes, steady-state twitch [Ca2+]itransie...

متن کامل

Effects of adenovirus-mediated sorcin overexpression on excitation-contraction coupling in isolated rabbit cardiomyocytes.

To evaluate the effect of sorcin on cardiac excitation-contraction coupling, adult rabbit ventricular myocytes were transfected with a recombinant adenovirus coding for human sorcin (Ad-sorcin). A beta-galactosidase adenovirus (Ad-LacZ) was used as a control. Fractional shortening in response to 1-Hz field stimulation (at 37 degrees C) was significantly reduced in Ad-sorcin-transfected myocytes...

متن کامل

No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes.

The majority of Na channels in the heart are composed of the tetrodotoxin (TTX)-resistant (KD, 2 to 6 micromol/L) "cardiac" NaV1.5 isoform; however, TTX-sensitive (KD, 1 to 25 nmol/L) "neuronal" Na channel isoforms have recently been detected in several cardiac preparations. In the present study, we determined the functional subcellular localization of Na channel isoforms (according to their TT...

متن کامل

Alterations in Ca cycling by lysoplasmenylcholine in adult rabbit ventricular myocytes

Liu, Shi J., Richard H. Kennedy, Michael H. Creer, and Jane McHowat. Alterations in Ca2 cycling by lysoplasmenylcholine in adult rabbit ventricular myocytes. Am J Physiol Cell Physiol 284: C826–C838, 2003. First published November 27, 2002; 10.1152/ajpcell.00465.2002.—We previously reported that lysoplasmenylcholine (LPlasC) altered the action potential (AP) and induced afterdepolarizations in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 85 5  شماره 

صفحات  -

تاریخ انتشار 1999